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Abstract

This paper presents the in situ dynamic measurements and the experimental validation of the numerical model for the

prediction of high-speed train-induced vibration. The Sesia viaduct is considered, which is a composite railway bridge

consisted by seven spans. The responses of the bridge are measured both under ambient vibration and under the excitation

of Italian ETR500Y high-speed trains. From the modal analysis of the ambient vibration data, two types of mode shapes

are identified by operational modal analysis. Based on the dynamic behavior of the adjacent spans, the modes of the bridge

can be distinguished as symmetrical and anti-symmetrical patterns, which indicates that although each span is statically

decoupled, the ballast and the rails realize a connection between the adjacent spans of the bridge.

To predict the bridge response due to the passage of high-speed trains, two numerical models are considered. First, a

train–bridge interaction model for a vehicle system with 15 degrees of freedom is implemented. Second, the train is

modeled as a series of moving load. The numerical simulation is validated by comparing the predicted accelerations and

strains with measured results, Both models give a good correspondence between the predicted and the measured response.

This study provides a better understanding of the structural behavior of a composite railway bridge under the excitation of

high-speed trains.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Steel–concrete composite bridges have been more and more exploited in new lines of the European high-
speed railway network due to considerable advantages regarding the design, construction time, durability and
costs. Nevertheless, these new design solutions, which have been introduced during a period of quick
expansion of the network, amplified problems related to dynamic effects and interaction phenomena, fatigue
loading, structural modeling, fatigue life and damage assessment [1].

Frýba [2] is the first to consider the case of beam structures subjected to a moving load. Zhang [3] evaluated
the load-carrying capacity of existing composite bridges under a pair of concentrated moving forces. Yang [4]
modeled the train as series of moving loads to investigate the key parameters that govern the dynamic
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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responses of the beams. De Roeck [5] predicted the dynamic response of the bridge using moving load model
and validated by in situ vibration measurements.

During the last decades considerable experimental and theoretical research on train–bridge interaction has
been carried out [6]. The train–bridge interaction model incorporates subsystems for the train and the bridge.
The governing equation of motion of the vehicle subsystem is usually derived using Lagrange equation of
motion while the coupled train–bridge interaction system is solved using Newmark-b method [7–10]. Based on
that, Xia [11] has proposed a dynamic interaction model of the bridge–articulated train system, the vehicle
model is a system with 15 degrees of freedom (dof’s). The case of the Thalys articulated train passing along the
Antoing Bridge on the Paris–Brussels high-speed railway line is analyzed. The dynamic responses of the bridge
and the articulated vehicles are calculated and experimentally measured. The proposed analysis model and the
solution method are verified through the comparison between the calculated results and the in situ measured
data.

The EC research project ‘‘DETAILS’’ aims at the improvement of design, safety and durability of
steel–concrete composite bridges. In order to achieve these objectives, structural modeling will be intergraded
with experimental tests and health monitoring in order to obtain necessary information on actual bridge
loading, structural modeling, fatigue resistance and damage assessment of these types of bridges. As part of
the experiments of the project, the Italian Sesia viaduct is tested under ambient vibration and the excitation of
Italian ETR500Y high-speed trains.

This paper presents the dynamic experiments and the experimental validation of two approaches for the
prediction of the bridge response due to the passage of the high-speed train. It is organized in the following
manner. Section 2 presents the dynamic experiments conducted at the Sesia viaduct and the modal analysis
based on the measured vibration data. Two types of mode shapes are identified by operational modal analysis
from the modal analysis of the ambient vibration data. Based on the dynamic behavior of the adjacent spans,
the modes of the bridge can be distinguished as symmetrical and anti-symmetrical patterns. Section 3 describes
the numerical model developed for the Sesia viaduct. Emphasis has been given on how to apply appropriate
boundary conditions according to the modal properties identified from the experiments. In Sections 4 and 5,
two different approaches for predicting the bridge responses due to the train passages are adopted. The
numerical simulation is validated by comparing the predicted and the measured response.
2. Experiment on the Sesia viaduct

2.1. Introduction to the bridge

The Sesia viaduct, located on the new Italian high-speed line between Torino and Milano, is a composite
railway bridge by seven spans, of 46m, and has a total length of 322m (Fig. 1). Each simply supported span
Fig. 1. Global view of the Sesia viaduct.
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Fig. 2. Cross section of the Sesia viaduct.

Fig. 3. Global vertical layout.

Fig. 4. Global horizontal layout.
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consists of a girder of the same double box cross section (Fig. 2). The bottom steel box is composed by lower
flanges and three webs. The concrete slab has a width of 13.6m, a thickness of 0.4m, and is connected to the
steel girder by studs. The total mass of each span is about 1380 ton.

2.2. Measurement setup

The sensor layout is chosen such that global and local structural behavior can be analyzed in both vertical
and horizontal directions. Because of the large extension of the bridge, only the second span from Torino to
Milano side is extensively tested, both under ambient vibration and the excitation of Italian ETR500Y high-
speed trains. Accelerations and strains at different points on the bridge are measured. A small number of
sensors are placed on the first and the third span as well to evaluate the dynamic coupling between two
neighboring spans. The layouts of accelerometers are shown in Figs. 3 and 4. All measurement channels are
denoted by a label xYzzF, where the number x denotes the number of the span (1, 2 or 3), the character Y

indicates the main girder (A, B or C) or stiffener (D or E), the number zz denotes the number of the section
(1–15), and the character F denotes the direction (X, Y or Z).
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The local strain field in longitudinal direction is measured with fiber optic sensors of SMARTEC
(Fig. 5). These sensors measure the relative displacement between two points, at an intermediate distance
of 1 or 1.2m apart. These measurements are carried out on two cross sections: one next to the pier and
another at a quarter of the span (Figs. 6 and 7). A total of eight sensors are placed at four different
levels on two vertical lines in order to measure the local strains in the bottom and upper part of the cross
section.
Fig. 5. Installation of SOFO sensors.

Fig. 6. Vertical view of local strain layout.

Fig. 7. Local strain layout at a quarter section.
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2.3. Modal analysis

The modal analysis is performed using ambient vibration data, free vibration data and train passage data,
respectively. A modal model of the bridge is identified using reference-based stochastic subspace identification
(SSI) [12]. From the modal analysis of ambient vibration data, a total of eight modes is extracted (Table 1).
Based on the dynamic behavior of the adjacent spans, the modes of the bridge can be approximately
distinguished as symmetrical and anti-symmetrical patterns (Fig. 8). This indicates that although each span is
statically decoupled, the ballast and the rails realize a connection between the adjacent spans that is clearly
reflected in the dynamic properties of the bridge.

From the modal analysis of the free vibration data, immediately after the train leaves the considered second
span, three modes are identified which correspond to the symmetrical modes, the second torsional mode is not
identified (Fig. 9). The first and the second symmetrical bending modes are identified from the modal analysis
Table 1

Identified eigenfrequencies and damping ratios from ambient measurements

Modes Symmetrical Anti-symmetrical

Frequency (Hz) Damping ratio x ð%Þ Frequency (Hz) Damping ratio x (%)

First vertical bending mode 4.14 2.17 3.62 1.70

First torsional mode 9.00 1.84 8.35 1.79

Second vertical bending mode 10.44 2.64 10.00 1.84

Second torsional mode 14.28 1.69 11.26 2.20

Fig. 8. Identified modes: (a) symmetrical and (b) anti-symmetrical.
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Fig. 9. Identified mode shapes of symmetrical model: (a) first vertical bending mode at 4.14Hz, (b) first torsional mode at 9.00Hz,

(c) second vertical bending mode at 10.44Hz and (d) second torsional mode at 14.28Hz.
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Table 2

Comparison of identified eigenfrequencies from different vibration data

Mode Free vibration Train forced vibration Ambient vibration

Frequency

(Hz)

Damping ratio x
(%)

Frequency

(Hz)

Damping ration x
(%)

Frequency

(Hz)

Damping ration x
(%)

First vertical bending mode 3.90 2.30 3.67 2.81 4.14 2.17

First torsional mode 9.13 1.25 – – 9.00 1.84

Second vertical bending

mode

10.41 2.38 10.54 4.27 10.44 2.64

Fig. 10. Numerical model of Sesia viaduct.
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of the train passage data. This indicates that symmetrical modes are predominantly excited when the train
passes the bridge. Table 2 compares the eigenfrequencies identified from different vibration data, it can be
observed that the first bending frequency decreases when the train is on the bridge. This can be due to the mass
of the train and the train–bridge interaction, which will be discussed in Section 4.

3. Numerical modeling of the Sesia viaduct

The numerical model (Fig. 10) of the Sesia viaduct is created with the finite element program Ansys. As
described in Section 2.3, the symmetrical modes are predominantly excited when the train passes the bridge,
appropriate boundary conditions are applied according to the symmetrical modal properties derived from the
ambient vibration data. The longitudinal direction of the rail and the ballast are restricted to simulate their
continuity (Fig. 11). The element types and material properties are presented in Table 3. Particularly, a linear
spring element (combin14) is chosen to represent the headed shear stud. The corresponding nodes of the
concrete slab and steel girder are connected by these spring elements in the longitudinal direction and coupled
in other directions [13]. The characteristic of the spring element is defined by the load–slip curves obtained
from stud push-out tests [14].

The calculated eigenfrequencies are compared to the frequencies of symmetrical modes identified from the
ambient vibration data (Table 4). There is a good correspondence between the calculated and measured
results.
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Fig. 11. Track-ballast model.

Table 3

Element types and material characteristics of numerical model

Element type E ðN/m2
Þ r (kg/m3

Þ n Mass (kg) Stiffness (N/m) Damping (N s/m)

Steel box shell63 2.056Eþ11 7850 0.3 – – –

Ballast solid45 2.8Eþ08 1700 0.28 – – –

Concrete slab solid45 3.1Eþ10 2500 0.17 – – –

Stud combin14 – – – – 450Eþ06 –

Lateral panel solid45 1.55Eþ10 2300 0.17 – – –

Rail beam4 2.056Eþ11 7850 0.3 – – –

Sleepers mass21 – – – 290 – –

Krs combin14 – – – – 500Eþ06 –

Crs combin14 – – – – – 200Eþ03

Table 4

Comparison of eigenfrequencies from ambient measurements and numerical model

Mode Frequency (Hz)

Experiment Calculation

First vertical bending mode 4.14 4.15

First torsional mode 9.00 9.01

Second vertical bending mode 10.44 10.27

Second torsional mode 14.28 14.56
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4. The dynamic train–bridge interaction model

The dynamic model for the train–bridge interaction system consists of the subsystem for the train and the
subsystem for the bridge. The two subsystems are linked by coupling the displacement relationships between
rail and wheel. A perfect contact between the wheel and the rail is assumed. Wheel hunting and track
irregularities are not yet considered.

4.1. Train subsystem

The high-speed train considered in the vibration measurements is the Italian ETR500Y type. It is composed
of a locomotive followed by eight passenger cars and another locomotive. The length of the locomotive is
19.7m, while the length of the passenger car is 26.1m. The average static axle loads for the locomotives and
passenger cars are 176.4 and 112.9 kN, respectively.

The vehicle system, as commonly adopted in Refs. [15–18] is assumed as following (Fig. 12): each vehicle is
considered as an independent entity with one car body, two bogies and four wheel sets. Both the primary and
secondary suspension system can be simplified as an elastic system. The bogies and the wheel sets are linked by



ARTICLE IN PRESS

KHH

CHH
CVVKVV

CV

KV

CH
KH

Y2

Z2

RX2

Y1

Z1

Rx1

h1
h2

h3

2b1

Zw1

Rxw1

Yw1

2b2

Z2

RY2

W1W2W4 W3

Z1
RY1

Z3
RY3

2q0

Y3

Rz3

Y1

Rz1

2s

Y2

Rz2

Fig. 12. Vehicle model.

K. Liu et al. / Journal of Sound and Vibration 320 (2009) 201–220208
horizontal and vertical springs and dampers. There are horizontal and vertical springs (KH , KV ) and dampers
(CH , CV ) at each side of each wheel set, also horizontal and vertical springs (KHH , KVV ) and dampers
(CHH , CVV ) at each side of each bogie. So in a vehicle there are eight horizontal and vertical springs and
dampers in the primary suspending system, four horizontal and vertical springs and dampers in the secondary
suspending system. Each car body and each bogie has 5 dof’s: the displacement in vertical direction (Z) and
longitudinal direction (Y), and rotations around the X-axis ðRX Þ, Y-axis ðRY Þ and Z-axis ðRZÞ. Each wheel set
has 3 dof’s: the displacement in vertical direction (Z) and longitudinal direction (Y), and rotation around the
X-axis ðRX Þ. In this way, the vehicle model has a degree of 27 dof’s, in which the dof’s of the wheel sets
are linked to the movement of the bridge and only the remaining 15 ones are taken as independent dof’s in the
vehicle equations. The main characteristics of the train are listed in Table 5.

The displacement of a vehicle is defined by the following vector:

Vv ¼ fY 1;RX1;RZ1;Z1;RY1;Y 2;RX2;RZ2;Z2;RY2;Y 3;RX3;RZ3;Z3;RY3g
T

where subscript 1 stands for the front bogie, subscript 2 stands for the car body and subscript 3 stands for the
rear bogie.

The equation of motion of the vehicle can be expressed as

Mv
€Vv þ Cv

_Vv þ KvVv ¼ Pv (1)

where Mv, Cv and Kv are mass, damping and stiffness matrices; Vv, _Vv and €Vv are the displacement, velocity
and acceleration vectors of the vehicle system; Pv is the interaction force vector transferred to the bogies by the
first suspension system [19].

For understanding the train–bridge interaction, it is useful to calculate the eigenfrequencies and eigenmodes
of the vehicle.

Table 6 summarizes the eigenfrequencies and describes the corresponding mode shapes of the vehicle.
The natural frequencies of the vehicle range from 0.26 to 6.06Hz. The first bending frequency of 4Hz of the
bridge is in the range of natural frequencies of the vehicle. This can explain why the first bending frequency of
the bridge is influenced when the train is on the bridge, while the second bending frequency remains almost
unchanged. Fig. 13 shows the vertical modes of two bogies, which are very close to the first bending frequency
of the bridge.
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Table 5

Characteristics of ETR500Y high-speed train

Item Unit Locomotive Passenger-car

Mass of car body (M2) kg 55,976 34231

Mass moment of inertia of car body around x-axis (Ix2) kg �m2 53,366 54642

Mass moment of inertia of car body around y-axis (Iy2) kg �m2 1,643,086 1,821,521

Mass moment of inertia of car body around z-axis (Iz2) kg �m2 1,630,520 1,760,619

Mass of bogie (M1) kg 3896 2760

Mass moment of inertia of bogie around x-axis (Ix1) kg �m2 3115 2304

Mass moment of inertia of bogie around y-axis (Iy1) kg �m2 5843 2504

Mass moment of inertia of bogie around z-axis (Iz1) kg �m2 8107 4071

Mass of wheel set ðMwÞ kg 2059 1583

Mass moment of wheel set (Iw) kg �m2 1164 753

Lateral stiffness of the primary suspension system ðKH Þ kN=m 82,821 266,785

Vertical stiffness of the primary suspension system ðKV Þ kN=m 896,100 404,370

Lateral damping of the primary suspension system ðCH Þ kN � s=m 0 0

Vertical damping of the primary suspension system ðCV Þ kN � s=m 7625 3750

Lateral stiffness of the secondary suspension system ðKHH Þ kN=m 73,035 32,054

Vertical stiffness of the secondary suspension system ðKVV Þ kN=m 236,030 90,277

Lateral damping of the secondary suspension systemðCHH Þ kN � s=m 4625 5000

Vertical damping of the secondary suspension system ðCVV Þ kN � s=m 18,125 8125

Half distance between two wheel-sets ðq0Þ m 1.5 1.5

Half span of the primary suspension system ðb1Þ m 1.115 0.965

Half span of the secondary suspension system ðb2Þ m 1.0425 1.0825

Distance between the car body and the secondary suspension system ðh1Þ m 0.915 0.7

Distance between the secondary suspension system and bogie ðh2Þ m 0.098 0.12

Distance between the bogie and wheel sets ðh3Þ m 0.087 0.13

Table 6

Computed natural frequencies of the vehicle

Mode Frequeny (Hz)

Lateral and roll mode of the car body 0.2630

Anti-symmetrical lateral and roll mode of 2 bogies; yaw mode of the car body 0.3957

Symmetrical lateral and roll mode of 2 bogies; lateral and roll mode of car body 0.4709

Symmetrical vertical mode of 2 bogies, vertical mode of car body 0.4899

Anti-symmetrical vertical mode of 2 bogies, pitch mode of car body 0.6376

Symmetrical lateral and roll mode of 2 bogies 3.1963

Anti-symmetrical lateral and roll mode of 2 bogies 3.1969

Yaw mode of front bogie 3.8652

Yaw mode of rear bogie 3.8652

Symmetrical vertical mode of 2 bogies 4.0656

Anti-symmetrical vertical mode of 2 bogies 4.0680

Anti-symmetrical roll mode of 2 bogies 4.6691

Symmetrical roll mode of 2 bogies 4.6716

Pitch mode of front bogie 6.0676

Pitch mode of rear bogie 6.0676

K. Liu et al. / Journal of Sound and Vibration 320 (2009) 201–220 209
4.2. Bridge subsystem

The equation of motion of the bridge can be expressed as

Mb
€Vb þ Cb

_Vb þ KbVb ¼ Pb (2)



ARTICLE IN PRESS

Fig. 13. Vertical modes of bogies: (a) symmetrical mode at 4.0656Hz and (b) anti-symmetrical mode at 4.0680Hz.
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where Mb, Cb and Kb are the mass matrix, damping matrix and stiffness matrix, respectively. Vb, _Vb and €Vb

represent the displacement, velocity and acceleration vectors of the bridge, respectively. Pb is the force vector
transferred to the bridge.

In the present numerical model developed for the Sesia viaduct, more than 8000 nodes and 11,000 elements
are included. Therefore, the modal superposition method is adopted to solve the equation of the motion of the
bridge. It is assumed that only the first N0 modes of bridge are contributing to the interaction computation
and the modal data are normalized to the mass matrix.

The displacements of the bridge can be expressed as

Vb ¼ U � q (3)

where U represents the first N0 modes of bridge and q represents the displacement in modal coordinates.
Therefore the equation of motion of the bridge can be defined as follows:

€qþ C�b _qþ K�bq ¼ Pn

b (4)

where Cn

b, K
n

b , P
n

b can be calculated by Eqs. (6), (5) and (7), respectively.

C�b ¼ UTCbU (5)

K�b ¼ UTKbU (6)

P�b ¼ UTPb (7)

where Pb represents the force vector caused by the wheel–rail interaction. It is determined by position,
movement status and mass of the wheel sets. The horizontal, torsional and vertical forces produced by wheel
set i of bogie j corresponding to the deck displacement can be computed from the equilibrium displacement of
the wheel:

FYW1 ¼ �MW1
€Y W1 þ 2CH ½ _Y 1 þ q _RZ1 � h3

_RX1 � _Y W1� þ 2KH ½Y 1 þ qRZ1 � h3RX1 � Y W1�

FZW1 ¼ �MW1
€ZW1 þ 2CV ½ _Z1 þ q _RY1 � _ZW1� þ 2KV ½Z1 þ qRY1 � ZW1� þ F G1

FRXW1 ¼ �IW1
€RXW1 þ 2CV Db1ð _RX1 � _RXW1Þ þ 2KV Db1ðRX1 � RXW1Þ

8><
>: (8)

FYW2 ¼ �MW2
€Y W2 þ 2CH ½ _Y 1 þ q _RZ1 � h3

_RX1 � _Y W2� þ 2KH ½Y 1 þ qRZ1 � h3RX1 � Y W2�

FZW2 ¼ �MW2
€ZW2 þ 2CV ½ _Z1 þ q _RY1 � _ZW2� þ 2KV ½Z1 þ qRY1 � ZW2� þ F G2

FRXW2 ¼ �IW2
€RXW2 þ 2CV Db1ð _RX1 � _RXW2Þ þ 2KV Db1ðRX1 � RXW2Þ

8><
>: (9)

FYW3 ¼ �MW3
€Y W3 þ 2CH ½ _Y 3 þ q _RZ3 � h3

_RX3 � _Y W3� þ 2KH ½Y 3 þ qRZ3 � h3RX3 � Y W3�

FZW3 ¼ �MW3
€ZW3 þ 2CV ½ _Z3 þ q _RY3 � _ZW3� þ 2KV ½Z3 þ qRY1 � ZW3� þ F G3

FRXW3 ¼ �IW3
€RXW3 þ 2CV Db1ð _RX3 � _RXW3Þ þ 2KV Db1ðRX3 � RXW3Þ

8><
>: (10)

FYW4 ¼ �MW3
€Y W4 þ 2CH ½ _Y 3 þ q _RZ3 � h3

_RX3 � _Y W4� þ 2KH ½Y 3 þ qRZ3 � h3RX3 � Y W4�

FZW4 ¼ �MW3
€ZW4 þ 2CV ½ _Z3 þ q _RY3 � _ZW4� þ 2KV ½Z3 þ qRY1 � ZW4� þ F G4

FRXW4 ¼ �IW3
€RXW4 þ 2CV Db1ð _RX3 � _RXW4Þ þ 2KV Db1ðRX3 � RXW4Þ

8><
>: (11)
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where F YWi, FZWi, FRXWi ði ¼ 1; 2; 3; 4Þ represent the forces and the moment under the ith wheel set. MW is the
mass of the wheel set, IW is the inertia around the X-axis of the wheel set, FG is the vehicle weight on the wheel
and D is the gauge of the rail. The wheel–rail forces between nodes are transferred to the two neighboring rail
nodes, which can be calculated by Eq. (12):

FiN1

FiN2

" #
¼

a1 0 0

0 a1 0

0 0 a1
a2 0 0

0 a2 0

0 0 a2

2
6666666664

3
7777777775

FYi

FZi

F RXi

2
64

3
75 (12)

where N1 and N2 are the neighboring rail nodes of the ith wheel position; and FiN1
and FiN2

are the vectors of
forces transferred to the nodes N1 and N2, respectively, F Yi, FZi, FRXi are the forces under the ith wheel.
a1 ¼ d2=ðd1 þ d2Þ, a2 ¼ d1=ðd1 þ d2Þ, where d1 and d2 are the distances between the ith wheel position and the
neighboring rail nodes N1 and N2, respectively.

In this paper, due to the high quality of the high-speed line, wheel hunting and track irregularities are not
considered. The displacement of wheel set i under bogie j is taken equal to that of the same position on the
structural member on which the vehicle runs.

4.3. Computation of the coupled train– bridge system

The vehicle subsystem and the bridge subsystem are linked by coupling the displacement relationships
between wheel and rail [20]. As described before, the equations of motion of the vehicle subsystem and the
bridge subsystem can be expressed as

Mv
€Vv þ Cv

_Vv þ KvVv ¼ Pv

€qþ C�b _qþ K�bq ¼ Pn

b

(
(13)

The displacements, velocities and accelerations of the vehicle and bridge system within a certain time step
are computed in an iterative process shown in Fig. 14. The dynamic analysis of the bridge response due
to the forces transmitted by the wheel is alternated with the dynamic analysis of the vehicle motion due to
the bridge displacements. The integration of the equations is performed according to the Newmark-b method
with value of b ¼ 0:25 and g ¼ 0:5 according to the trapezoidal rule [21]. The rate of convergence is set as
0.001 for the acceleration response to assure the analytical accuracy.

4.4. Numerical prediction and comparison with measurements

According to the European standard [22], for the determination of the maximum deck acceleration, the
frequencies in the dynamic analysis should be considered up to a maximum of: (i) 30Hz; (ii) 1.5 times the
frequency of the first mode shape of the structural element being considered, including at least the first three
modes. For the Sesia viaduct, these two frequencies are 30 and 4.2Hz. The threshold for low-pass filtering
therefore is 30Hz. The first 300 modes, with natural frequencies ranging from 2.78 to 40.37Hz, are used for
train–bridge interaction computation, with a uniform damping ratio equal to 2.5% for all modes. The speed of
the train is set to 288 km/h according to the measurement. Fig. 15 shows the computed vertical displacement
history of mid-span point 2b08 (see Fig. 3), the maximum displacement reaches 1.9mm, which indicates that
the Sesia viaduct is very stiff: for the train passage the maximum dynamic displacement is less than 2mm with
a span of about 45m.

Figs. 16a and 17a compare the experimental and predicted time history of the vertical acceleration at points
2c06 and 2c12 (see Fig. 3) after a filtering to 30Hz. A good agreement between the experimental and the
predicted results is observed. The acceleration has approximately the same maximum value in the time
domain. Figs. 16b and 17b depict the results in the frequency domain. A peak corresponding to the first
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Fig. 14. Flowchart of solution procedure.
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bending frequency of the bridge at 4 Hz is observed in the predicted as well as the measured spectra. The
existing major peaks beyond 20Hz are contributed by the higher modes, specifically the third torsional mode
and the third bending mode. From the one-third octave band spectra (Figs. 16c and 17c), it can be seen that
the correspondence between the predicted and experimental results is quite good, which indicates that the
dynamic behavior of the bridge is properly estimated.
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Fig. 15. Computed vertical displacement time history at point 2b08 (with train–bridge interaction model).
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The predicted vertical acceleration of the car body is presented in Fig. 18. The low value of the vertical
acceleration indicates that the inertial force is much lower than the train weights.

Fig. 19 compares the predicted and measured strain at point S16 (see Fig. 7). Both the prediction and the
measurement almost have the same magnitude and the contribution of the axles can be clearly distinguished.

The force history in the stud is very meaningful as input for laboratory fatigue tests and fatigue analysis. In
the numerical model, the spring element combin14 is chosen to represent the shear studs that connect the
flanges with the concrete slab. Fig. 20 shows a typical force time history in one stud.

The passage of successive loads with uniform spacing can excite the structure in resonance when critical
speed is reached. Fig. 21 shows the predicted maximum displacement of mid-span point 2b08 under varying
train speeds. Computations are made in the interval [250,400] km/h with a step of 5 km/h. The resonance speed
is reached at 380 km/h.

The critical speed can also be computed as follows [2]:

V cri ¼
l0

i
� f n; i ¼ 1; 2; 3; . . . ; n (14)

For Italian high-speed train ETR500Y, l0 ¼ 26:1m, i ¼ 1, and f 1 ¼ 4:15Hz, The critical speed is 389 km/h,
which matches well with the train–bridge interaction analysis.

5. Moving load model

Another alternative for predicting the bridge response under train passages is using a series of moving loads
to represent the effects of the moving train.

The distribution of n vertical axle loads moving in the longitudinal y direction is written as the summation
of the product of Dirac functions that determine the time-dependent position xk ¼ fxk0; yk0 þ vt; zk0g

T. The
time history gskðtÞ of the constant load is equal to the kth axle weight of the train [23]:

Pbkðx; tÞ ¼
Xn

k¼1

dðx� xk0Þdðy� yk0 � vtÞdðz� zk0ÞgskðtÞez (15)

yk0 is the initial position of the kth axle that moves with the train speed v along the y-axis and ez denotes the
vertical unit vector.

Fig. 22 depicts the predicted time history and frequency content of the vertical acceleration at point 2c12
(see Fig. 3) after a filtering to 30Hz. It can be again concluded that, there is a good match between the
experimental and numerical predictions as well. Fig. 23 shows the very small difference of the predicted
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Fig. 16. Comparison of acceleration at point 2c06 between prediction (gray line, with train–bridge interaction model) and measurement

(black line): (a) time history, (b) frequency content and (c) one-third octave band RMS spectra.
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Fig. 17. Comparison of acceleration at point 2c12 between prediction (gray line, with train–bridge interaction model) and measurement

(black line): (a) time history, (b) frequency content and (c) one-third octave band RMS spectra.
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acceleration at point 2c12 between the two models in the frequency domain. A peak occurs at 4Hz which
confirms the interaction behavior between the vehicle and bridge, however, the interaction effect is so small
that the interaction effect can be neglected. This is due to the high stiffness of the bridge and therefore the
inertia effect and the interaction effects of the suspended vehicle systems are very small. Furthermore, the rails
of the high-speed line have a quite good quality so that the wheel mass effects do not play an important role.
The conclusion can be drawn that as far as the bridge response is concerned, the simple moving load model
gives excellent results and is by far more efficient compared to the expensive computation of the train–bridge
interaction model. However, if the response of the vehicle is of interest, the train–bridge interaction model
should be preferred.

6. Conclusions

The main objective of this paper is to present the dynamic experiments of the Sesia viaduct and the
experimental validation of two numerical prediction methods for estimating the vibrations of the bridge due to
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a train passage. For the dynamic experiments, not only accelerations are measured but also axial strains by
fiber optical sensors. Based on the dynamic behavior of the adjacent spans, the modes of the bridge can be
approximately distinguished as symmetrical and anti-symmetrical patterns, which indicates that, although
each span is statically decoupled, the ballast and the rails realize a connection between neighboring spans. The
symmetrical modes are predominantly excited when the train passes bridge. Therefore, the numerical model is
developed according to the symmetrical modal properties, i.e. appropriate boundary conditions are applied in
the longitudinal direction of the rail and the ballast to simulate their continuity.

Two approaches for predicting bridge responses under the excitation of train are adopted: the train–bridge
interaction model and the moving load model. Both models give a good match of the response with the
experiment. The results suggest that the moving load model allows for an accurate prediction of the bridge
response and is by far more efficient. However, if the response of the vehicle is of interest, the train–bridge
interaction model should be preferred.
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Fig. 22. Comparison of acceleration at point 2c12 between prediction (dash line, with moving load model) and measurement (solid line):

(a) time history, (b) frequency content and (c) one-third octave band RMS spectra.
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This study also allows a better understanding of the structural behavior of the composite railway bridge.
From these measurements and the modeling application, it can be concluded that using proper equipment and
suitable layouts of sensors, the dynamic behavior of bridges can be assessed by vibration measurements,
opening the way for continuous health monitoring.
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